
Element Characteristics

Definition

Company / Organization: becke.ch

Scope: 0 (language=en;language=default;technology=odt;organization=becke.ch;)

Version: 1.0.0

Author: convention-n-definition--s0-v1@becke.ch

Copyright © 2017 becke.ch – All rights reserved

mailto:convention-n-definition--s0-v1@becke.ch

Document Version History

Version Date Author Description

0.9 20.02.2014 Raoul Becke Initial version

1.0 18.08.2017 Raoul Becke First Published Version: Slightly reworked introduction,
improved: “Element: Modification: State versus Structure &
Behavior”, “Element: Instance versus Copy”, “Element: State:
(Data) Migration”

Module / Artifact / Component / Work-Product Version History

Version Date Author Requirements Components Changed

0.9 20.02.2014 Raoul Becke Establish an element
definition that can be used
as the basis for further
definitions and conventions.

Definitions & Conventions

1.0 18.08.2017 Raoul Becke Prepared document for
publication in the Internet.
As basis for [1], [2] and
especially the naming
convention in the MS Cloud
Architecture Foundation.

This document

http://www--s0-v1.becke.ch/data/becke-ch--ms-cloud--s0-v1/document/
http://www--s0-v1.becke.ch/data/becke-ch--ms-cloud--s0-v1/document/

Table of Contents
1. Introduction... 6
2. Definition... 6
3. Element Containment... 9
3.1. Sets & Set Theory.. 9
3.1.1. Description.. 9
3.1.2. Basic Operations... 10
3.1.2.1. Unions.. 10
3.1.2.2. Intersections... 10
3.1.2.3. Complements... 10
3.1.2.4. Cartesian product... 10
4. References and glossary... 11
4.1. References... 11
4.2. Glossary (terms, abbreviations, acronyms)..11

Illustration Index

Index of Tables
Table 1: References.. 11
Table 2: Glossary.. 11

Element Characteristics 1. Introduction

1. Introduction
This document defines the characteristics of an element and is focused but not necessarily restricted to information
technology (IT). This document serves as basis for further definitions and conventions – namely: “Scope and
Version Convention” see [1] and “Naming Convention” see [2].

Whether element is the correct term or whether it rather should be called application, solution, artifact, module,
component, work-product or ... depends on the context. For example in IT an UML element can be a: class, artifact,
component, etc.

For clarification every paragraph below has been extended with an IT and a non-IT related sample where
appropriate.

2. Definition
Element: Structure (Interface), Behavior: Every element (application, solution, artifact, module, component,
work-product, etc.) is declared and defined through its structure and behavior. The structure consists of an external
and an internal part. The external part is called the interface and is exposed externally for interaction whereas the
internal part can only be accessed internally.
For example a door latching device (a simple one without a keyhole lock construction) consists of the following
interface: a door knob (or door lever) and a latch bolt (or just simply latch) and the following behavior: turning the
door knob moves the latch bolt. The structure furthermore defines how much degrees the knob can be turned in
one or the other direction and how much the latch can move into or out of the device. The internal structure is not
obvious and varies from vendor to vendor (USP: Unique Selling Point) but normally consists of some gear wheel
attached to the door knob and operating on the latch bolt.
Or for example a sales-opportunity management software component exposes the object fields: “title”, “type”,
“closure reason”, “stage”, etc. and implements the following behavior respective business rule: “before an
opportunity can be set to stage “closed” or “offer rejected” a closure reason must be selected”. The structure
furthermore defines that the “title” field is of type string with a maximal length of 50 characters and that the “type” is
a drop-down field that can only take the values: “New Business” and “Existing Business – Increase”.

Element: State (Values): Through interaction and behavior the state respective values of an element change over
time. The states respective values an element can have are limited by its structure (min- & max-value) and have a
certain type. The type is analogue to the element as well declared and defined through its structure and behavior.
The values it exposes define its interface and the operations defined on these values reflect its behavior. There
exist 4 different classifications of types respective levels of measurement aka scales of measure: Nominal scale,
Ordinal scale, Interval scale and Ratio scale with the following binding base-structure and -behavior – see [3]:

• Nominal scale: The nominal type differentiates between items or subjects based only on their names or
(meta-)categories and other qualitative classifications they belong to:

◦ Logical / mathematical operations: “=”/”≠”

◦ Example: Gender: Male, Female

• Ordinal scale: The ordinal type allows for rank order (1st, 2nd, 3rd, etc.) by which data can be sorted, but still
does not allow for relative degree of difference between them:

◦ Logical / mathematical operations: “=”/”≠” ; “<”/”>”

◦ Example: School grade: From “very good” down to “unsatisfactory”

• Interval scale: The interval type allows for the degree of difference between items, but not the ratio between
them:

◦ Logical / mathematical operations: “=”/”≠” ; “<”/”>” ; “+”/”−”

◦ Example: Examples include temperature with the Celsius scale, which has an arbitrarily-defined zero point
(the freezing point of a particular substance under particular conditions), date when measured from an
arbitrary epoch (such as AD) and direction measured in degrees from true or magnetic north. Ratios are not
allowed since 20 °C cannot be said to be "twice as hot" as 10 °C, nor can multiplication/division be carried out
between any two dates directly.

• Ratio scale: The ratio type takes its name from the fact that measurement is the estimation of the ratio between
a magnitude of a continuous quantity and a unit magnitude of the same kind:

◦ Logical / mathematical operations: “=”/”≠” ; “<”/”>” ; “+”/”−” ; “×”/”÷”

◦ Example: Examples include mass, length, duration, plane angle, energy and electric charge. Ratios are
allowed because having a non-arbitrary zero point makes it meaningful to say, for example, that one object
has "twice the length" of another (= is "twice as long").

The state change has no bearing on the structure and behavior of the element. There are exceptions where state

Copyright © 2017 becke.ch 6

Element Characteristics 2. Definition

change has impact on structure and its related behavior: abrasion and self-modifying code. Through intensive
usage most elements (not software) start to wear down which has impact on structure and behavior to the point
where the element becomes unusable. According to [4]: In computer science, self-modifying code is code that
alters its own instructions while it is executing - usually to reduce the instruction path length and improve
performance or simply to reduce otherwise repetitively similar code, thus simplifying maintenance.
For example a door latching device respective its type (nominal scale) can have 2 different states: “open” and
“close”. When turning the door knob in one direction the door changes into open state and when turning the knob in
the other direction the door goes into closed state. Actually the underlying type (ration scale) of the knob respective
latch is more fine granular and can have any value in terms of degrees respective centimeters between the two
final states: “open” and “close”. The structure of the latching device defines how much degrees respective
centimeters the knob respective bolt can be turned in one or the other direction respective moved in or out of the
device until it reaches the state called open respective closed. Through intensive usage and state changes the
structure of the door latching device wears down to the point where it becomes unusable respective broken.
Or for example the JRE (Java Runtime Environment) while executing the java class files will start to inline certain
frequently called methods instead of calling them, because method invocation is more expensive i.e. takes more
time than code in-lining.

Element: Modification: State versus Structure & Behavior: Modification of State is expected and happens
through interaction on the exposed interfaces and related behavior. Modification of Structure and/or Behavior is not
expected and can have a Major or Minor impact on related elements interacting with this element. A Major change
implies that this element is no longer compatible with some (or all) related elements. A Minor change has no effect
on the related elements and can be performed risk-less.
For example when increasing the diameter of the latch bolt of a door latching device then this is a Major change
because the device will not fit anymore into the hole of the door case. On the other hand reducing the diameter of
the latch bolt is a Minor change because it will still fit into the hole of the door case.
Or for example when removing fields on the sales-opportunity management software then this is a major change
because related software that is using this interface cannot operate anymore on sales opportunities the way it used
to. On the other hand adding optional (NOT mandatory) fields is a minor change because the related software can
still operate on sales opportunities the way it did before and just ignore the newly added optional fields.

Element: Instance versus Copy: An instance and a copy of the same element have identical structure and
behavior but (potentially) a different state. Furthermore tWhile a copy has the same state as the element it was
copied from, the state of an instance starts in its initial state. Sometimes the initial state respective initial values are
undefined which is also known as NULL value(s) in IT. The difference between an instance and a copy is the
origination process. Instances are produced en masse (on the conveyor), all following the same blue-print
(describing the structure & behavior), whereas copying starts on the final element, analyzing its structure and
behavior and copying it bit by bit (and potentially improving it while copying) and while copying reconstructing as
well respective creating a new copy of the underlying blue-print. As a result respective in other words: Instances
share the same structure and behavior but have separate state and copies have separate structure, behavior and
state. This implies that modifying the structure & behavior of an instance, modifies the structure & behavior of all
related instances whereas changing the structure & behavior of a copy only modifies the structure & behavior of
this copy (and all its instances spawned from this copy). Accordingly Iin IT the difference between an instance and
a copy is that instances of a program share the same code (structure & behavior) base and from there the code is
loaded/instantiated into memory for execution, whereas copies of a program contain as well a copy of the
underlying code. Based on this observation to modify the structure & behavior of an element, without altering the
original/source, it needs to be copied not instantiated (see next section “Element: Branching”).
While a copy has the same state as the element or instance it was copied from, the state of a new instance starts in
its initial state. Sometimes the initial state respective initial values are undefined which is also known as NULL
value(s) in IT.
There can exist several instances respective copies of an element with identical structure and behavior but different
states after some time of interaction.
For example if there are several users at the same time working with the sales-opportunity management software
component then normally everyone requires his own instance/copy of the software and these different copies will
soon have different states due to user interaction and behavior.

Element: Branching: Copy & Modification: When an element is copied and modified but still serves the same
(original) purpose then this is called branching where the different copies of an element with the same point of
origin and purpose coexist. Normally the target element maintains a link to the source element it was branched
from.

Element: Historization: Historization helps to reconstruct the structure, behavior and state of an element before it
was modified. Element respective element-state historization is achieved by making a copy of the current element
respective instance and assigning it a time-stamp or version-number before changing its structure, behavior and/or
state. Element historization should be performed before changing the structure or behavior of an element. Element-
state historization should be performed before changing the state of an element.

Element: State: (Data) Migration: Once the (external and/or internal) structure changes, the element should be
historized and (special) transformation rules are required to map the old values into the new structure. The
mapping of the old values into the new structure is called (data) migration. In this context we need to differentiate
between major and minor changes (see above). If a major change happens then a migration cannot be performed

Copyright © 2017 becke.ch 7

Element Characteristics 2. Definition

without information loss and therefore the element needs to be historized first, this is not optional, otherwise the
information content is lost and cannot be reconstructed.
For example if the address structure changes and the street-name and -number are stored in separate fields
instead of one then the information content is still the same but if the street-number is not stored anymore at all
then the information content is lost and the element has to be historized before migration because otherwise the
information cannot be reconstructed anymore.

Element: Life-cycle: Build- & Run-Time: The life-cycle of an element starts with its creation respective the
creation of its structure and behavior where requirement gathering, design, implementation and packaging takes
place. Next the element is deployed centrally and/or in different locations and then starts respective is instantiated
in a specific initial state with specific initial values. After its creation respective instantiation the element goes
through different modifications of state and sometimes in course of a redesign goes through a modification of
structure and behavior and finally the life-cycle ends when the element respective its instances get deleted.
Analogue to the creation the modification of structure and behavior is normally as well accompanied by a
requirement, design, implementation and packaging phase; followed by a deployment respective upgrade and last
but not least migration phase. The life-cycle of an element starting with the creation-, followed by modification and
ending with the deletion of structure and behavior is known as “build-time” whereas the life-cycle of an instance of
an element starting with its instantiation-, followed by modifications of state and ending with the deletion of the
instance is known as “run-time”.

Element: Composition: Atomic Element: Elements are normally composed of other elements and the way they
are composed; together with the structure and behavior of the elements in the composition; determines their
structure and behavior of the composed element. Elements that are exposed have regarding the parts that are
exposed and their related behavior a direct impact on the interface and behavior of the composition. Elements
respective element parts that are not exposed contribute to the internal structure of the composition and regarding
the integrated structure respective structure that is integral part of the composition and related behavior they
contribute to the behavior of the resulting composed element. In other words all elements in the composition
contribute to the behavior of the resulting composed element but only regarding behavior related to structure that is
integrated respective integral part of the composition.
Some elements are contained in respective internal part of the composition and accordingly deployed together with
the composed element while other elements are located outside respective external to the composition, can be
shared between different instances, copies and potentially different compositions and are not necessarily deployed
together with the composition. Furthermore some elements are exclusively dedicated for this composition while
others can be reused in other compositions. Elements that are exclusively dedicated for this composition have the
same life-cycle as the composed element whereas elements reused in other compositions have an own life-cycle
driven by the compositions where they are used. The composition ends once we reach the atomic element level. All
elements consist in the end of atomic elements and therefore the exposed respective integrated structure and
related behavior of the atoms always contribute to the structure and behavior of the composition. Through
composition new elements are created.
For example water is composed of the atoms: hydrogen and oxygen in the combination H2O.
Or for example a radio consists of internal parts that are exclusively dedicated like for example the chassis which
differentiates it from other radios and internal parts that are reusable like for example: transistors, resistors, etc.
And consists of external parts that are exclusively dedicated like for example a car mount to mount this specific
radio within the car respective, reusable like for example the radio station that provides the audio for all different
kind of radios.
Or for example a sales-opportunity management software component is composed of the opportunity object fields
plus some picker components: product picker, internal participant picker and external participant picker to assign
products, internal- and external-participants to an opportunity. While the opportunity object is exclusively dedicated
for and internal part of the sales-opportunity management software, the picker components belong to other
software components and are reused as well in different other compositions for example task management
software. Some picker components are provided as libraries and accordingly become an internal part of the sales
opportunity while others are provided externally as a central service for use in different solutions.
Or for example a piece of iron is composed of single “fe” (ferrum) atoms and the way they are composed
determines whether for example I get an iron-knife or an iron-bar. And whether I get an fe atom or another atom is
determined by the atomic nucleus and its electron sheath.

Element: Linking: Static (ID) & Dynamic (Algorithm): Linking of target- to source-elements in a composition or
target-elements to users requires that their adjacent interfaces are compatible. Linking can ether be done static,
dynamic or mixed. Static linking retrieves the target element based on its unique identifier (ID) whereas dynamic
linking looks up the target element applying dedicated search algorithms on ((meta) information related to) the
behavior and structure of the element respective on its values. Applying search algorithms on ((meta) information
related to) the structure of the element only makes sense for the non adjacent interfaces respective structure. A
unique ID is assigned to the element during build-time when the element (structure and behavior) is created and in
addition a further unique ID is assigned during run-time to each new instance. The search algorithm is applied
during run time and first searches the elements that implement the requested (adjacent) interface(s), then it scans
through the ((meta) information related to) behavior and structure of these elements for the best match and last but
not least it searches through the different instances of the best matching element for the one whose values best
match the search query.
For example a Philipps screw exposes a cross slot interface. To screw or unscrew this item we could ether
statically always use the same screwdriver or we could dynamically search for alternatives that implement a cross

Copyright © 2017 becke.ch 8

Element Characteristics 2. Definition

slot interface and use for example a drill with a Philips screw mount. Next whether we can use a drill which would
make our life much easier (depending on the number of screws) or not depends on whether we find a plug socket
nearby where we can plug in the plug-interface. And last but not least the values the drill has should match i.e. we
only take a drill (instance) whose drill head is in the optimal position that fits with our position towards the screw
(but in this case we normally just turn ourselves the drill head so that it fits the positioning).
Or for example using Google we can ether dynamically search for a web page entering the search criteria we are
interested in or we can statically bookmark the relevant web page. When searching then we first search all domains
(DNS) respective web servers that implement respective expose the HTTP(S) protocol, in there we search all
documents that implement the HTML protocol and last but not least we retrieve all pages (“HTML document
instances”) that match our search criteria.

Element: ID: Modification, Copying & Branching: A unique ID is assigned to the element respective to each of
its instances during creation respective instantiation. Modifications of structure and behavior respective state have
no impact on the unique ID, which causes issues in case of major changes because static (ID) linking will fail on
structure respective behavior level. A problem arises when the element is copied, in this case a new unique ID
needs to be assigned to the copy respective the copied ID needs to be extended with a copy identifier to make it
unique again. In case the copied element still serves the same purpose the copied ID is extended with a copy
identifier to show the affiliation to the same branch otherwise a new ID is assigned.

Element: Containment: Container elements have an own structure and behavior and are not influenced by the
elements they contain. Compared to composition a container respective carrier element can exist without the
elements it contains respective carries and these elements are mostly not or only loosely coupled.
For example in salt-water the water contains respective carries the salt and they can be separated quite easily
through evaporation and exist on their own, in this case already the combined name “salt-water” suggests that this
is a containment and not a composition. On the other hand when looking at water (element composition) then it has
an own name, only exists the way it is composed of hydrogen and oxygen in the combination H2O and it is difficult
to decompose.
Or for example a ZIP is, besides its size, not influenced by the elements it contains and has its own structure and
behavior.

Often container elements are used to collect and categorize elements with similar structure and behavior. In this
case they can (“calculate” and) “expose” the common structure and behavior of the contained elements. The
container themselves tend to overlap due to the fact that an element can belong to different structure and behavior
categories.
For example a box of nails can contain further boxes containing the different kind of nails: wire-nails, spikes, pins,
etc.. Furthermore most nails are made of metal but some are made of wood which puts most of them into the
category metalware and some of them into the category woodware, which makes the nail container overlap the
woodware and metalware container while the metalware and woodware container stay disjoint. Further nail
categorizations are: fastener and sharp pointed object. Not all fasteners are sharp pointed objects and vice-versa
which puts the nail containers into the intersection area of the fastener and sharp pointed object container.
Or for example the sales-opportunity management software component belongs to the sub-domain XSEL (Cross
Selling) which itself belongs to the domain CRM (Customer Relationship Management).

Element: Composition & Containment: Normally the elements used in a composition are as well categorized and
their categories might be different from or redundant to the one of the composition. During build time while these
elements are still loose they are put into a “composition” container which contains a container for internal and
several containers for the different exclusively dedicated external parts. These containers might then contain further
nested category containers to host the different elements used in the composition. Once the build is finished and
packaged the internal respective external container(s) become internal respective external composition(s) and are
then deployed within the “composition” container or separately.
For example when building any kind of equipment the internal part container and its sub-category containers hold
the equipment pieces that have to be assembled and the exclusively dedicated external container normally holds
among other things some manuals in different languages. Instead of calling the containers respective the elements
they become “internal” respective “external”; rather give them clear category names like “equipment” and
“documentation” or even better composed names consisting of composition name plus category name. These
containers respective elements can then be deployed respective shipped together but stored at home separately.

3. Element Containment
Element containment is described best using the set theory.

3.1. Sets & Set Theory
Definition see [5]: “A set is a gathering together into a whole of definite, distinct objects of our perception
[Anschauung] or of our thought – which are called elements of the set.”.

3.1.1. Description
(See [5]) “There are two ways of describing, or specifying the members of, a set. One way is by intensional

Copyright © 2017 becke.ch 9

Element Characteristics 3. Element Containment

definition, using a rule or semantic description:

A is the set whose members are the first four positive integers.

B is the set of colors of the French flag.

The second way is by extension – that is, listing each member of the set. An extensional definition is denoted
by enclosing the list of members in curly brackets:

C = {4, 2, 1, 3}

D = {blue, white, red}.

Every element of a set must be unique; no two members may be identical.“

Typical definitions in computer science are:

• Intensional:

◦ EBNF

◦ Regular Expressions

◦ SQL

• Extensional:

◦ Bit Battery

◦ Set<Object> in Programming

3.1.2. Basic Operations
See [5]: There are several fundamental operations for constructing new sets from given sets.

3.1.2.1. Unions
Two sets can be "added" together. The union of A and B, denoted by A B∪ , is the set of all things that are
members of either A or B.

3.1.2.2. Intersections
A new set can also be constructed by determining which members two sets have "in common". The intersection of
A and B, denoted by A ∩ B, is the set of all things that are members of both A and B. If A ∩ B = , then A and B ∅
are said to be disjoint.

3.1.2.3. Complements
Two sets can also be "subtracted". The relative complement of B in A (also called the set-theoretic difference of A
and B), denoted by A \ B (or A − B), is the set of all elements that are members of A but not members of B. Note
that it is valid to "subtract" members of a set that are not in the set, such as removing the element green from the
set {1, 2, 3}; doing so has no effect.

3.1.2.4. Cartesian product
A new set can be constructed by associating every element of one set with every element of another set. The
Cartesian product of two sets A and B, denoted by A × B is the set of all ordered pairs (a, b) such that a is a
member of A and b is a member of B.

Copyright © 2017 becke.ch 10

Element Characteristics 4. References and glossary

4. References and glossary

4.1. References
Reference Location Remarks

[1] http://becke.ch/data/becke-ch--scope-and-
version-convention--s0-v1/document/

Scope and Version convention

[2] http://becke.ch/data/becke-ch--naming-
convention--s0-v1/document/

Naming convention

[3] http://en.wikipedia.org/wiki/
Level_of_measurement
Or cached: http://becke.ch/data/becke-ch--
element-characteristics-definition--s0-v1/
document/cache/Level%20of%20measurement
%20-%20Wikipedia.html

Levels of measurement or scales of measure

[4] http://en.wikipedia.org/wiki/Self-modifying_code
Or cached: http://becke.ch/data/becke-ch--
element-characteristics-definition--s0-v1/
document/cache/Set%20(mathematics)%20-
%20Wikipedia.html

Self-modifying code

[5] http://en.wikipedia.org/wiki/Set_%28mathematics
%29
Or cached: http://becke.ch/data/becke-ch--
element-characteristics-definition--s0-v1/
document/cache/Set%20(mathematics)%20-
%20Wikipedia.html

Set definition (mathematics)

Table 1: References

4.2. Glossary (terms, abbreviations, acronyms)
Terms / Abbreviations / Acronyms Description

Table 2: Glossary

Copyright © 2017 becke.ch 11

http://becke.ch/data/becke-ch--element-characteristics-definition--s0-v1/document/cache/Set%20(mathematics)%20-%20Wikipedia.html
http://becke.ch/data/becke-ch--element-characteristics-definition--s0-v1/document/cache/Set%20(mathematics)%20-%20Wikipedia.html
http://becke.ch/data/becke-ch--element-characteristics-definition--s0-v1/document/cache/Set%20(mathematics)%20-%20Wikipedia.html
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Set_(mathematics)
http://becke.ch/data/becke-ch--element-characteristics-definition--s0-v1/document/cache/Set%20(mathematics)%20-%20Wikipedia.html
http://becke.ch/data/becke-ch--element-characteristics-definition--s0-v1/document/cache/Set%20(mathematics)%20-%20Wikipedia.html
http://becke.ch/data/becke-ch--element-characteristics-definition--s0-v1/document/cache/Set%20(mathematics)%20-%20Wikipedia.html
http://en.wikipedia.org/wiki/Self-modifying_code
http://becke.ch/data/becke-ch--element-characteristics-definition--s0-v1/document/cache/Level%20of%20measurement%20-%20Wikipedia.html
http://becke.ch/data/becke-ch--element-characteristics-definition--s0-v1/document/cache/Level%20of%20measurement%20-%20Wikipedia.html
http://becke.ch/data/becke-ch--element-characteristics-definition--s0-v1/document/cache/Level%20of%20measurement%20-%20Wikipedia.html
http://en.wikipedia.org/wiki/Level_of_measurement
http://en.wikipedia.org/wiki/Level_of_measurement
http://becke.ch/data/becke-ch--naming-convention--s0-v1/document/
http://becke.ch/data/becke-ch--naming-convention--s0-v1/document/
http://becke.ch/data/becke-ch--scope-and-version-convention--s0-v1/document/
http://becke.ch/data/becke-ch--scope-and-version-convention--s0-v1/document/

	1. Introduction
	2. Definition
	3. Element Containment
	3.1. Sets & Set Theory
	3.1.1. Description
	3.1.2. Basic Operations
	3.1.2.1. Unions
	3.1.2.2. Intersections
	3.1.2.3. Complements
	3.1.2.4. Cartesian product

	4. References and glossary
	4.1. References
	4.2. Glossary (terms, abbreviations, acronyms)

